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due to the influence of the slowly varying climate anomalies in the oceans. The importance of the 
global oceans in governing climate variability demonstrates the need to monitor and forecast the 
global oceans in addition to El Niño–Southern Oscillation in the tropical Pacific. To meet this need, 
the Climate Prediction Center (CPC) of the National Centers for Environmental Prediction (NCEP) 
initiated real-time global ocean monitoring and a monthly briefing in 2007. The monitoring covers 
observations as well as forecasts for each ocean basin. In this paper, we introduce the monitoring 
and forecast products. CPC’s efforts bridge the gap between the ocean observing system and the 
delivery of the analyzed products to the community. We also discuss the challenges involved in 
ocean monitoring and forecasting, as well as the future directions for these efforts.
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C limate variations on subseasonal to interannual time scales have significant impacts on 
different facets of society. Knowing the variations in advance is important for decision-
makers and emergency managers. It has been well established that the predictable 

component of climate variability primarily comes from the influence of slowly evolving 
climate anomalies in the oceans (National Research Council 2010). For instance, sea surface 
temperature anomalies (SSTAs) in the central and eastern tropical Pacific associated with 
El Niño–Southern Oscillation (ENSO; McPhaden et al. 2021) have a considerable influence 
on precipitation in many tropical and extratropical regions (Ropelewski and Halpert 1987;  
Hu et al. 2020a; Li et al. 2022). During El Niño (La Niña) years, a wet (dry) winter is favored 
in the southern parts of North America (Ropelewski and Halpert 1987) and southeastern 
China (Wu et al. 2003), and an inactive (active) summer monsoon is expected in the Indian 
Peninsula (Rasmusson and Carpenter 1983). Moreover, ENSO is also an important factor 
in modulating the variability of typhoons in the northwestern Pacific (Han et al. 2016) and 
hurricanes in the North Atlantic (Gray 1984).

SSTAs in the other ocean basins also play an active role in influencing regional climate 
variability. SSTAs in the tropical North Atlantic Ocean are a crucial predictor of hurricane 
activity in the Atlantic (e.g., Wang et al. 2014). SSTAs in the Indian Ocean can affect the 
Indian summer monsoon (e.g., Cherchi et al. 2007) and climate variations in South China (e.g., 
Wu et al. 2003). Furthermore, the oceanic temperature anomaly along the coastal regions can 
impact biological productivity, such as the fisheries in the California coastal regions (Ware 
and McFarlane 1989).

The importance of the global oceans in climate variability and predictability led to the 
development of a global ocean observing system that includes both in situ and satellite ob-
servation platforms that monitor physical, chemical, or biological variables contributing to 
the characterization of Earth’s climate (Bojinski et al. 2014; Moltmann et al. 2019). In recent 
decades, considerable advances have been made in the in situ ocean observing systems. For 
example, ocean observations from Argo floats now provide extensive observations across 
the global oceans with core Argo floats sampling from the surface to 2,000 m and deep Argo 
floats sampling to 4,000 or 6,000 m (e.g., Roemmich et al. 2019). A comprehensive set of 
ocean observations is routinely provided to operational centers that ingest them in the ocean 
and atmospheric data assimilation systems to support climate monitoring and prediction 
activities. As a product of the data assimilation systems, a three-dimensional rendition of the 
ocean state on a regular grid has greatly advanced our understanding of ocean variability 
and air–sea interactions (Fujii et al. 2019).

The full utility of the ocean observing system can only be realized from an end-to-end ocean 
climate information system that includes (i) collecting ocean observations, (ii) methods to convert 
them into data products that are readily usable by the user community, and (iii) a routine 
delivery of synthesis information about the current state of the ocean and its near-time evolution. 
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To meet the last requirement, with the support of the Climate Program Office (CPO) of the 
National Oceanic and Atmospheric Administration (NOAA), the Climate Prediction Center 
(CPC) of the National Centers for Environmental Prediction (NCEP) in 2007 initiated  
activity for disseminating the real-time global ocean monitoring and forecast information. 
This activity is also complemented by a monthly briefing that is open to all interested users. 
With the ongoing support of the Global Ocean and Monitoring of Observations (GOMO) 
program, this effort continues to date.

CPC’s ocean monitoring and forecast effort provides direct or indirect support to various 
operational products including ENSO, hurricane, monthly and seasonal U.S. precipitation 
and temperature, and drought outlooks within NOAA and the academic community. Through 
monitoring the reanalyses, the Climate Forecast System Reanalysis (CFSR) and the Global 
Ocean Data Assimilation System (GODAS) at NCEP, we continuously validate the products 
which provide initial conditions to the NCEP Climate Forecast System version 2 (CFSv2). 
Outside of NCEP, these products are widely used in supporting climate services and research. 
The ocean briefing plots have also been used as teaching materials for college and graduate 
students.

In this report, to provide additional visibility for our effort, and to seek feedback from a 
broader user community, we summarize the monitoring and forecast products. The paper is 
organized as follows: the second section highlights monitoring products, the third section 
summarizes ocean forecast products and monitoring of the ocean observing system, and the 
fourth section discusses the challenges and outlines the future direction. The observational, 
reanalysis, and forecast datasets used for supporting this activity are described in the 
appendix.

Monitoring of global and individual ocean basins
Global ocean.  Monitoring essential climate variables over the global oceans provides a  
broad overview of the current state of the ocean. The general focus of the monitoring 
documents anomalies and their temporal tendencies (to depict their evolution in the few 
months leading up to the present, e.g., Fig. 1b) for different variables. Here, monthly,  
weekly, and pentad anomalies are referenced to the corresponding climatologies in  
1991–2020. The anomalies for which spatial distribution is monitored include

•	 SST (Fig. 1a),
•	 sea surface height (SSH),
•	 ocean heat content (OHC),
•	 OHC in the upper 300 m (OHC300),
•	 subsurface ocean temperature along the equator,
•	 ocean mixed layer depth, and
•	 tropical cyclone heat potential (TCHP).

To complement the spatial patterns of anomalies, we also monitor the temporal evolution 
of spatially averaged SSTAs in various ocean basins, including the global, tropical and North 
Pacific, tropical and North Atlantic, and Southern Oceans (i) starting in 1950 and 1982,  
(ii) during last four years, and (iii) during last 13 months. Similar monitoring activities are 
also made for SSH anomalies for periods (i) since the advent of satellite altimetry (i.e., 1993; 
Pujol et al. 2016) and (ii) during the last 4 years.

Tropical and North Pacific.  The primary focus of ENSO monitoring and its evolution is 
various area-averaged Niño indices: the Niño1+2, Niño-3, Niño-3.4, and Niño-4 (Barnston 
et al. 1997). Sustained warm/cold Niño-3.4 values are indicative of an El Niño/La Niña event 
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in the eastern equatorial Pacific. In addition, routine monitoring of other ENSO indices is also 
maintained including the ENSO-Modoki (Ashok et al. 2007), cold tongue (Ren and Jin 2011), 
warm pool (Ren and Jin 2011), and the relative Niño-3.4 (van Oldenborgh et al. 2021). These 
indices are included to discern different flavors of ENSO (Fig. 2) (McPhaden et al. 2021). In 
the peak phase of an El Niño, the so-called eastern (central) Pacific event is associated with 
a large positive anomaly in the cold tongue (warm pool or ENSO-Modoki) index.

Previous analysis has indicated that the ENSO SST variability has precursors that are related 
to the integrated measure of basinwide averages of subsurface thermal conditions across the 
equatorial Pacific. For example, the ENSO SST anomalies are related to the temporal evolution 
in the subsurface warm water volume (WWV) in the equatorial Pacific quantified by the WWV 
index (Meinen and McPhaden 2000), which is a proxy of the recharge/discharge oscillator 
paradigm for the phase transition of the ENSO cycle (Jin 1997). Statistically, a positive 
(negative) WWV index leads El Niño (La Niña) by a few seasons (Meinen and McPhaden 2000). 
As part of the ocean monitoring effort, the temporal evolution of the equatorial ENSO precursors 
is included. In addition, the projection of the ocean temperature anomalies (OTAs) onto two 

Fig. 1.  Optimal Interpolation version 2.1 (OIv2.1) monthly SSTAs (°C) of (top) the global oceans in 
February 2022 and (bottom) the tendencies, which are the differences in SSTAs between February 
and January 2022.
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leading empirical orthogonal 
function (EOF) modes are up-
dated routinely (Fig. 3; Kumar 
and Hu 2014). For the projec-
tion onto the EOF2, the OTAs in 
various longitudes and depths 
are weighted on their leading 
EOF patterns, implying spatially 
heterogeneous contributions of 
ocean temperature to the WWV 
variation, which is not consid-
ered in the conventional WWV 
index definition.

High-frequency variations 
associated with oceanic Kelvin 
wave and westerly wind bursts 
are an important factor modulat-
ing ENSO evolutions. To detect the 
intraseasonal to seasonal varia-
tions in the ocean, we monitor 
both oceanic Kelvin wave activity 
along the equatorial Pacific based 
on the methodology of Seo and 
Xue (2005) with GODAS pentad 
ocean temperature (Fig. 4), and 
pentad OTAs from the Tropical 
Atmosphere Ocean (TAO) analysis 
from the Tropical Ocean Global 
Atmosphere program (McPhaden 
et al. 1998) and GODAS. In the oceanic Kelvin wave index (Fig. 4), the eastward propagation 
of the positive (negative) anomalies corresponds to the downwelling warm (upwelling cold) 
Kelvin wave, which favors the development of El Niño (La Niña). Here, the oceanic Kelvin wave 
index is defined as standardized projections of pentad OTAs onto the 14 patterns of extended 
EOF1 (EEOF1) of equatorial OTAs of upper 300 m following Seo and Xue (2005). Furthermore, 
to qualify the contributions of different dynamical and thermodynamic processes in SSTAs, 
different terms of oceanic mixed layer heat budget are also diagnosed and updated for each 
pentad based on the GODAS output (Huang et al. 2010, 2012; Hu et al. 2016).

The monitoring of the tropical Pacific also includes time–longitude evolution of pentad 
anomalies of surface zonal current, SST, OHC, zonal wind at 850 hPa (U850), and velocity 
potential at 200 hPa along the equator. These variables are of importance in monitoring the 
air–sea coupled evolution along the equator. In addition to the time–longitude section, the 
spatial patterns of monthly anomalies of SST, SST tendency, year-to-year change in SST, 
outgoing longwave radiation (OLR), winds at 925 and 200 hPa, and ocean surface heat flux 
during the latest 3 months are also monitored.

Other monitored variables in the North Pacific include the spatial pattern of monthly SSTA, 
weekly SSTA tendency, OLR, sea level pressure (SLP), and ocean surface heat flux anomalies 
(Fig. 5), as well as the monthly anomalies of SST, OLR, and wind at 925 hPa during the latest 
3 months. From these variables, we can discern the contributions of dynamic and thermo-
dynamic processes to the SSTA evolution. Furthermore, based on GODAS, the pentad means 
of upwelling and downwelling along the northeastern Pacific coast between 20° and 60°N 

Fig. 2.  OIv2.1 monthly SSTAs (°C) of (a) cold tongue,  
(b) warm pool, (c) ENSO-Modoki, and (d) relative Niño-3.4 
indices in the last four years.
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(important modulators for fishery production; Ware and McFarlane 1989) during the last 
13 months and 4 years are updated routinely.

In the North Pacific, the Pacific decadal oscillation (PDO) is crucial for the regional 
climate and marine ecosystems (Mantua et al. 1997), and monitored through (i) an SST-based 
PDO index (SPDOI), and (ii) an OHC300-based PDO index (HPDOI) updated monthly (Kumar 
and Wen 2016). SPDOI is the standardized projection of the monthly SSTAs onto the first 
EOF pattern of North Pacific SSTA, while HPDOI is defined as the projections of monthly 
OHC300 anomalies from GODAS onto the first EOF of the North Pacific (20°–60°N) OHC300 
variability. HPDOI provides a natural way to highlight the lower-frequency variability in 
the SPDOI. It is also noted that on average, HPDOI lags SPDOI by a few months following 
the downward propagation of PDO-associated temperature from the ocean surface to the 
subsurface.

Fig. 3.  (a),(b) The bars are the projection coefficients of the GODAS monthly ocean temperature 
anomalies (OTAs) onto the (c) EOF1 and (d) EOF2, respectively. The lines in (a) and (b) are the 
OIv2.1 monthly Niño-3.4 index (°C). The lines in (c) and (d) are the climatological depth of the 20°C 
isotherm (D20), which represents the depth of the oceanic mixed layer.
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The Indian Ocean.  There are 
two main modes of SSTA vari-
ability in the tropical Indian 
Ocean: the Indian Ocean dipole 
mode (IOD; Saji et al. 1999) and 
the Indian Ocean basin mode 
(IOBM; Chambers et al. 1999). 
The IOD index, and its corre-
sponding southeastern (SETIO) 
and western (WTIO) nodes, 
as well as the IOBM index, are 
monitored for their evolutions 
since 1950 and 1982, and dur-
ing the latest four years (Fig. 6),  
respectively. When the IOD index 
is positive (negative), the warm-
ing (cooling) in WTIO is larger 
than that in SETIO, and surface 
easterly (westerly) wind anoma-
lies prevail. The monitoring products also include the spatial patterns of monthly anoma-
lies of SST, SST tendency, year-to-year change in SST, OLR, wind at 925 and 200 hPa, 
temporal and longitude evolutions of pentad anomalies of SST, OHC, U850 anomalies 
along the equatorial Indian Ocean and 10°S, as well as the monthly anomalies of SST, 
OLR, and wind at 925 hPa during the latest 3 months. These oceanic and atmospheric 
variables together help us to understand the coupled air–sea interactions in the Indian 
Ocean, such as IOBM and IOD-like variability.

The Atlantic and Arctic Oceans. For the tropical and North Atlantic Ocean, temporal evolu-
tions of multiple indices are monitored, including the ATL3 (Zebiak 1993), tropical North 
Atlantic (TNA), tropical South Atlantic (TSA), and meridional gradient (TNA–TSA; Enfield 
et al. 1999) indices (Fig. 7). The ATL3 is a key index to measure the equatorial Atlantic Niño 
evolution and the TNA index is an indicator of Atlantic hurricane activity. The monthly North 
Atlantic Oscillation (NAO) index (NAOI), calculated based on Barnston and Livezey (1987), 
is included as a monitoring component. Together with the NAO, the evolution of the zonal 
SSTA of the tropical and North Atlantic Ocean is monitored as well.

Similar to the other ocean basins, the spatial patterns of monthly anomalies of SST, SST 
tendency, year-to-year change in SST, OLR, wind at 925 and 200 hPa, ocean surface heat 
flux, as well as the monthly anomalies of SST, OLR, and wind at 925 hPa during the latest 
3 months in both the tropical and North Atlantic Ocean are also provided. For the tropical 
Atlantic Ocean, wind shear between 200 and 850 hPa, relative humidity at 700 hPa, and 
TCHP are monitored. The monitoring of these quantities routinely updates the status of the 
environmental conditions that modulate hurricane development in the tropical North Atlantic 
Ocean and, therefore, is important during the hurricane peak season that extends from 
August to October.

For the Arctic Ocean, based on the analyses of the National Snow and Ice Data Center 
(http://nsidc.org/arcticseaicenews/), we discuss the monthly sea ice extent, historical ranking, 
as well as the possible atmospheric drivers of the sea ice anomalies. That provides a basis 
for CPC Arctic sea ice prediction verification (www.cpc.ncep.noaa.gov/products/people/wwang/
seaice_seasonal/index.html).

Fig. 4.  Oceanic Kelvin wave index along the equatorial 
Pacific Ocean calculated based on GODAS pentad OTAs.
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Global ocean forecasts and global ocean observing system
Global ocean forecasts. Real-time monitoring efforts are complemented by their predictive 
counterparts. The real-time forecasts for modes of variability in each ocean basin are based 
on the forecasts of the NCEP CFSv2 (Saha et al. 2014; Xue et al. 2013; Zhu et al. 2015), 
which is initialized with the NCEP Climate Forecast System Reanalysis (Xue et al. 2012; Saha 
et al. 2010). In addition to the update of the CPC website dedicated to the CFSv2 seasonal 
and monthly forecasts associated with ENSO (www.cpc.ncep.noaa.gov/products/people/wwang/
cfsv2fcst/), the forecasting component focuses on the indices including Niño-3.4, IOD, PDO, 
and TNA.

Figure 8 shows an example of the forecasts of the Niño-3.4 index. By comparing the 
evolution of the forecasts with different initial conditions during the last nine months, the 
tendencies of the model forecast are illustrated and are useful in developing the official ENSO, 
surface temperature, and precipitation forecasts at CPC. SSTA forecasts of CFSv2 in the North 
Pacific for different lead times are also routinely released to monitor the marine heatwave 
in the region. The forecasts of the TNA are useful input for developing the seasonal Atlantic 
hurricane outlook. It should be noted that compared with the prediction in the central and 

Fig. 5.  OIv2.1 (top left) monthly SSTAs, (top right) weekly SSTA tendency, (middle left) OLR monthly anomalies, (middle right) 
SLP monthly anomalies, (bottom left) the sum of net surface short- and longwave radiation monthly anomalies, and (bottom 
right) the sum of latent and sensible heat flux monthly anomalies. Here, the weekly SSTA tendency is referred to the differ-
ences between weekly SSTA centered on 2 Mar 2022 and weekly SSTA centered on 2 Feb 2022. SST is derived from the OIv2.1, 
OLR from the NOAA-18 Advanced Very High Resolution Radiometer (AVHRR) measurements, winds, surface radiation, and 
heat fluxes from the NCEP–NCAR reanalysis. Anomalies are departures from the 1991–2020 base period means.
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eastern tropical Pacific Ocean associated with ENSO, the prediction skill for the SSTA in the 
North Atlantic (Hu et al. 2013) and North Pacific (Hu et al. 2014) Oceans is much lower and 
a large contributor to the skill is due to the impact of ENSO.

In addition to SST predictions, CPC has devoted considerable efforts to forecasting sea ice 
(Wang et al. 2013). Through improving model physics and sea ice initial conditions, Arctic 
sea ice variation prediction is found to be more skillful. In the monthly ocean briefing, we 
discuss the CPC prediction of the Arctic sea ice extent in the next nine months and compare 
it with the observed climatological evolution in 1981–2010 (www.cpc.ncep.noaa.gov/products/
people/wwang/seaice_seasonal/index.html).

Fig. 6.  Indian Ocean OIv2.1 SST indices, calculated as the area-averaged monthly SSTAs (°C) for 
the southeastern tropical Indian Ocean (SETIO; 90°–110°E, 10°S–0°) and western tropical Indian 
Ocean (WTIO; 50°–70°E, 10°S–10°N) regions, and dipole mode index, defined as differences 
between WTIO and SETIO. The basin mode index is the monthly SSTAs (°C) averaged over 
(30°–110°E, 30°S–30°N).
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Global ocean observing system. In situ ocean observations from different platforms are the 
basis of real-time ocean monitoring and prediction (Capotondi et al. 2019). As a result of 
international cooperation, a robust in situ ocean observing system now exists (Moltmann 
et al. 2019). However, there is a need to continuously monitor the health of the ocean 
observing system for various reasons: incidents of vandalism could lead to regional observing 
gaps; what ocean observations are received at operations centers and included in ocean data 
assimilation. For example, 16 buoy failures in 2008 were attributed to vandal actions and 
vandalism approximately contributed a continuous 15%–20% impact on the TAO product 
quality between October 2007 and June 2008 (Teng et al. 2009). For these reasons, monitoring 

Fig. 7.  Indices of tropical Atlantic weekly OIv2.1 SSTAs (°C): tropical North Atlantic (TNA;  
60°–30°W, 5°–20°N), tropical South Atlantic (TSA; 30°W–10°E, 20°S–0°) and ATL3 regions, and 
meridional gradient index, defined as differences between TNA and TSA. The ATL3 index is SSTAs (°C) 
averaged over (20°W–0°, 2.5°S–2.5°N).
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of the availability of the ocean observing system from various platforms is desired and 
provided in CPC, and includes observational counts from TAO and Triangle Trans-Ocean 
Buoy Network (TRITON), expendable bathythermograph (XBT) transects, and the Argo 
profiling float network.

Ocean observing system monitoring products include spatial distribution of ocean tempera-
ture profiles, time series of daily ocean temperature profile numbers in the upper 300 m for 
the global oceans and the tropical Pacific Ocean (10°S–10°N, 120°E–80°W), as well as vertical 
distribution of the ocean temperature profile number in 3°S–3°N. As an example, Fig. 9 shows 
the time series of the number of daily ocean temperature profiles per month accumulated 
in the tropical Pacific from TAO/TRITON (red line), Argo (blue line), XBT (green line), and  
TAO/TRITON/Argo/XBT together (black line) since January 1979 (Xue et al. 2017). The time series 
is striking in the quick increase of the numbers of the Argo profiles during the last 20 years. 
Also evident in the time series for the number of TAO observations is a precipitous decline 
that occurred in 2013. As TAO moored array in the equatorial tropical Pacific is crucial for 
ENSO monitoring and prediction, this decline raised concerns in the community leading to 
the workshop on the Tropical Pacific Observing System 2020 (TPOS 2020) held in January 
2014, at Scripps Institution of Oceanography, San Diego, United States. The purpose of the 
workshop was to evaluate the requirements and status of the ocean observing system in the 
tropical Pacific. Recommendations from the workshop resulted in the establishment TPOS 
2020 Project (https://tropicalpacific.org) to build a robust and sustainable observing system to 

Fig. 8.  CFSv2 predicted monthly Niño-3.4 SSTA (°C) from the latest 9 initial months. Displayed are 40 forecast members 
(brown) made four times per day initialized from the last 10 days of the initial month (labeled as IC=MonthYear) as well 
as the ensemble mean (red) and observations (OIv2.1; black).
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meet existing and evolving observational requirements. Similar reviews for the Atlantic (Johns 
et al. 2021) and Indian (Beal et al. 2020) Oceans have also been completed. As the ocean ob-
serving system evolves in near future, a continuous need for monitoring ocean observations 
becomes even more critical.

Challenges of ocean monitoring and predictions
Analysis uncertainty. One of the challenges for ocean observing is quantifying the uncer-
tainty. This uncertainty is reflected in disagreements among observation-based products. 
For example, Huang et al. (2013) noted that sometimes the differences of SSTA in the tropical 
Pacific between ERSSTv3b and OIv2 can be larger than 0.5°C. Such large uncertainties/
biases in the SST data can lead to different categorizations of ENSO events (Huang et  al. 
2016; Hu et  al. 2020b; Johnson et  al. 2019). Similarly, large differences in surface wind 
stress are present among the different reanalyses (Xue et al. 2011; Wen et al. 2018). Kumar 
and Hu (2012) compared the SST–surface wind and heat flux feedbacks associated with 
ENSO in six reanalyses and noted appreciable differences in both the spatial pattern and in-
tensity. Such uncertainties are either due to inadequate observations or biases in respective 
data assimilation systems (Xue et al. 2011; Huang et al. 2013, 2016).

Due to even fewer observations for the subsurface ocean, the differences are larger for the 
subsurface OTAs among different products (Xue et al. 2011, 2012). For example, there are no-
ticeable differences of OTAs along the equatorial Pacific in the intensities of both the negative 
and positive anomalies as well as detailed structures of the anomalies among TAO, GODAS, 
and NCEP’s CFSR (Saha et al. 2010; Xue et al. 2011; www.cpc.ncep.noaa.gov/products/people/
zzhu/HU_cfsr_tao_godas_mnth_PACIFIC.gif). Hu and Kumar (2015) argued that the differences 
in ocean temperature between GODAS and CFSR are larger when the availability of the TAO 
mooring observations reduces. Reduction of the biases in the subsurface ocean temperature 
has been demonstrated to improve prediction skills of ENSO (Zhu et al. 2012) and regional 

Fig. 9.  Time series of the number of daily ocean temperature profiles per month accumulated 
in the tropical Pacific from the Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network 
(TAO/TRITON; red line), Argo (blue line), the expendable bathythermograph (XBT; green line), and 
TAO/TRITON/Argo/XBT together (black line) since January 1979.

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/07/23 07:23 PM UTC

http://www.cpc.ncep.noaa.gov/products/people/zzhu/HU_cfsr_tao_godas_mnth_PACIFIC.gif
http://www.cpc.ncep.noaa.gov/products/people/zzhu/HU_cfsr_tao_godas_mnth_PACIFIC.gif


A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y D E C E M B E R  2 0 2 2 E2713

climate variability (Zhu et al. 2013). Also, a reduction in TAO observations might be potentially 
associated with the failure of some ENSO forecasts (McPhaden et al. 2015).

Such uncertainties also exist in other ocean monitoring products, such as SSH anomalies 
and near-surface zonal currents (Fig. 10). Ocean current plays an important role in ENSO 
evolution through zonal and meridional advection (Chen et al. 2016). In our monitoring efforts 
over the past 15 years, we noticed large differences in the near-surface zonal current anomalies 
(shading in Fig. 10) and in climatologies (contours in Fig. 10) between the satellite data (Dohan 
2017) and GODAS analysis. Similarly, the differences of SSH anomalies among the satellite 
altimetry, GODAS, and CFSR are sometimes extremely large in the high latitudes of both the 
Northern and Southern Hemispheres, especially in the regions near the boundary between 
the open oceans and sea ice mass. Such differences may be largely due to the biases in the 
data assimilation systems and also partially caused by the errors in the satellite data.

From the differences among observational products, it is evident that uncertainties among 
them need to be quantified and conveyed to the users. One such effort developed in CPC is 
archiving multiple ocean reanalyses from various operational centers. Using multiple ocean 
analyses, we quantify the signal and uncertainty in the ocean temperature analysis (Xue 
et al. 2012). A similar effort for quantifying uncertainties in the SST analysis has also been 
established. As a part of the monthly ocean briefings, cases with large uncertainty among 
ocean products are often discussed.

Future directions of ocean monitoring and prediction efforts. CPC’s ocean monitoring and 
prediction effort is continuously striving to enhance its scope and utility. For example, by 
including multiple analyzed SST data, the robustness of SSTA evolution can be illustrated. 
In the future, at the beginning of each ocean briefing, we plan to review major phenomena 
discussed in the previous month’s briefing to give a sense of continuity of the developing 
physical events.

Fig. 10.  Pentad zonal current anomalies (cm s−1) averaged in 2°S–2°N from the (left) Ocean Surface  
Current Analysis Real-time (OSCAR) and (right) GODAS (shading) and the corresponding  
climatologies (contours; cm s−1).
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Another area of enhancement is to develop a suite of monitoring and prediction products 
to include additional ocean phenomena. One recent example attracting the community’s 
attention is the long-lasting warm SST events in the extratropical Pacific Ocean. These 
events, often referred to as the “warm blob,” occurred in 2014–16 and 2019 (Bond et al. 
2015; Di Lorenzo and Mantua 2016; Hu et al. 2017; Amaya et al. 2020; Xu et al. 2020). 
Because of climate trends, the frequency of anomalous warm events is increasing. Given 
the societal impacts of long-lasting SST warming events, we intend to develop tools to 
monitor the evolution of marine heatwaves for global oceans with a focus on the North 
Pacific Ocean. With the expansion of ocean observations to more variables, in addition to 
sea surface salinity (Xie et al. 2014), future monitoring considerations may also include 
ocean color (Dutkiewicz et al. 2019), and ocean acidity (Guinotte and Fabry 2008).

Additional areas of enhancements in product delivery may also include providing 
diagnostics products for various facets of ocean variability and enhanced monitoring in 
the evolution of ocean observations. An example of diagnosis is our attempt to develop a 
suite of tools to understand the observed evolution of ENSO. Such an effort will include 
monitoring air–sea feedback contributing to ENSO evolution, heat budget analysis of 
ENSO SSTAs, the integrated influence of surface wind forcing in the equatorial Pacific, 
etc. The extratropical ENSO precursors, such as the Pacific meridional mode (PMM;  
Chiang and Vimont 2004) could also be included in the ocean briefing, as indications from 
climate projections suggest that PMM might increase under global warming (Liguori and 
Di Lorenzo 2018).

Monitoring the ocean observing system is important for continual assessment of the 
health of the observing system and, further, its possible influence on the quality of the 
ocean analysis as the observing system evolves. One of the TPOS 2020 Project recommen-
dations is a reconfiguration of in situ ocean observing systems in the tropical Pacific, and 
as this effort develops, it will be important to quantify its influence on ocean analysis and 
prediction. Toward this, we are developing an effort to enhance monitoring of the ocean 
observing system, and together with the assessment of consistency among various ocean 
analysis products from operational centers, assessing its influence on the analysis uncer-
tainty. Finally, toward improving and advancing CPC’s ocean monitoring and prediction 
products, we are continuously seeking inputs from the external community for their ideas 
and suggestions.

All the ocean monitoring and forecast products are posted on the following web page and 
updated routinely (“www.cpc.ncep.noaa.gov/products/GODAS/ocean_briefing.shtml#Global”). The 
monthly briefing PPT files since 2007 are archived at “www.cpc.ncep.noaa.gov/products/GODAS/
ocean_briefing_archive_ppt.shtml.”
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from “https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html” (Kalnay et al. 1996), “https://psl.noaa.gov/
data/gridded/data.ncep.reanalysis2.html” (Kanamitsu et al. 2002), and “https://psl.noaa.gov/data/gridded/
data.godas.html” (Behringer and Xue 2004), respectively. OLR data are available at “https://psl.noaa.
gov/data/gridded/data.interp_OLR.html” (Liebmann and Smith 1996). The SSH and zonal current data 
for this research are included in Pujol et al. (2016) and Dohan (2017). The details of the data can be 
referred to in the appendix.

Appendix:  Data
The monthly sea surface temperature (SST) data are from the Extended Reconstructed SST 
version 5 (ERSSTv5; Huang et al. 2017), and monthly and weekly SSTs are from daily Optimum 
Interpolation SST (OIv2.1; Huang et al. 2021). The SSH (Pujol et al. 2016) and zonal current 
data (Dohan 2017) are based on satellite retrieval of multimission altimeter data. The zonal 
component of wind at 850 hPa (U850) and vorticity potential at 200 hPa are from NCEP and 
the National Center for Atmospheric Research (NCAR) reanalysis (R1; Kalnay et al. 1996). 
Wind at 925 and 200 hPa, and heat flux are from NCEP and the Department of Energy (DOE) 
reanalysis (R2; Kanamitsu et al. 2002), and OLR data are from Liebmann and Smith (1996). 
All other variables are the outputs of the oceanic data assimilation from the GODAS 
(Behringer and Xue 2004). The monthly, weekly, and pentad anomalies are currently referred 
to the corresponding climatologies in 1991–2020, which are updated every 10 years.

The tropical cyclone heat potential (TCHP) is defined as the total OHC above the 26°C 
isotherm, which is a potential energy source for tropical cyclone geneses and growth. The 
ocean mixed layer depth is defined as the depth where the oceanic temperature deviation 
from the surface temperature is less than 0.8°C based on the oceanic temperature of GODAS 
(Huang et al. 2010), which is used to monitor the thermocline fluctuation along the equator 
associated with Kelvin wave activity, a trigger for ENSO initiation.

The forecasts are from the CFSv2 (Saha et al. 2014), which includes 40 ensemble members 
with a 9-month range made four times per day with initial conditions from the CFSR (Saha 
et al. 2010) of the last 10 days of the initial month.
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